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MAPPINGS OF BAR CONSTRUCTIONS 

BY 

JEAN-PIERRE MEYER 

ABSTRACT 

Quillen's famous Theorem B describes the homotopy fiber of BF : B ~  ~ Bqg', 
where f : ~ ~ ~ '  is a functor and B the classifying space functor. This is here 
generalized to a description of the homotopy fiber of 

B(F, oL, 13): B ( Y , ~ C , X ) ~  B(Y ' , ( 'C ' ,X ' ) ,  

where (F, a,/3) : (Y, ~r X)-~ (Y', cr X') is a mapping of 2-sided bar construc- 
tion data, 

The  purpose  of this note  is to p resen t  a genera l iza t ion of Qui l len ' s  T h e o r e m s  

A and B, [8], to bar  construct ions.  In the spirit of [3], we would like to consider  

morph i sms  of bar  construct ions  in as general  a sett ing as possible.  For  the sake of 

brevi ty,  however ,  we restrict ourselves  here  to the classical topological  case. This 

note may  serve as backg round  and mot iva t ion  for  the more  genera l  t r ea tmen t  in 

[4]; it may  suffice for those in teres ted strictly in the topological  case. 

1. Bar constructions 

We recall briefly certain definitions: 

(i) The  nerve  of a ca tegory  cs is the simplicial set N,(C~) whose n-s impl ices  

are sequences  

U A 0  al �9 ) A 1  " ~ ' ' "  a ) A .  

of n composab l e  arrows.  The  simplicial ope ra to r s  are defined by compos i t ion  

and insert ion of identi ty arrows,  [9]. If ~ is a topological  ca tegory,  then N , ( ~ )  is 

a simplicial space.  

(ii) If ~ is a ca tegory  and X : ~ ~ Top ,  Y : ~ *  --> T o p  are functors,  then the 
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simplicial bar construction B . ( Y ,  c~, X)  or B , (~ ,  Y x X) is the simplicial space 

whose n-component is given by 

B, (Y, ~, X)  = [ I  Y ( A ,  ) x X(Ao). 
u 

It is useful to think of this definition as attaching to the n-simplex u of N~(% ~) 

the "coefficient space" Y(target of u ) x  X (source of u). Two special cases of 

interest are: (a)  ~ corresponds to a group G; then X corresponds to a left 

G-space, Y to a right G-space and B, ={(y,g~ . . . . .  g,,x)}; (/3) Y = * ,  then 

B,(*,  ~, X) = hocolim, X. 

If we wish to handle the situation where ~ is a topological category and X, Y 

are continuous, it is best to use the language of G-graphs, [2], as in (iii) below. 

(iii) If ~ is a monoid in the category of G-graphs, ~ a right (?-graph over ~d, 

a left 6-graph over ~3, then the simplicial bar construction B,(~ ~ , ~ )  is the 

simplicial space with B, (~, ~3, ~ )  = ~ [] ~3 [ ] - . -  [] ~ [] ~ (n copies of ~). We 

can again write points of B,(~ ~3,~f) as (y, u,x) or (y,a,,a,. . . . .  ,an, x). 

(iv) In order to define mappings of bar-constructions, we need to have 

morphisms of the corresponding data. For (i), this is simply a functor f : ~ --* ~ ' .  

For (ii), this is a functor f : ~ ~ ~ '  and natural transformations a : Y ~ Y'f,  

/3 : X ~ X'f .  For (iii), this is a morphism of graph monoids (6, ~' need not be 

identical) f : ~-- ,  ~3' and f-morphisms a : ~ - - ,  ,~/',/3 : ~--~ ~ ' .  If is clear how to 

define such f-morphisms. It is also easy to see that morphisms, as given above, 

induce simplicial mappings of the corresponding simplicial bar-constructions. 

Applying the geometric realization functor, we obtain the classifying space B ~  
in (i), and the bar constructions B(Y,C~,X) in (ii) (with special cases 

(a) B ( Y , G , X ) ,  (/3) hocolimX),  B(~ ,q3 ,~)  in (iii). Also, from (iv) we 

obtain Bf:BC~-->B~ ', B ( f , a , / 3 ) : B ( Y , c ~ , X ) - - > B ( Y ' , ~ ' , X  ') and 

B ( f , a , / 3 ) : B ( ~ , ~ , ~ ) - - , B ( ~ ' , ~ ' , ~ ' ) .  Our aim is to study B(f,a, /3).  

2. Known theorems 

In this section, we recall some known theorems on mappings of bar- 

constructions. 

(i) Let f : c~__~ c~, be a functor and Y an object of c~,. The comma category 

v \ f  has objects (X, v) with X an object of ~ and v : Y-->fX;  morphisms from 

(X, v) to (X', v') are arrows w : X - - ~ X '  such that fw �9 v = v'. Then Quillen, [8], 

proves: 
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THEOREM A. /f B ( r \ f )  is contractible, then B f  : BC~-->B~ ' is a homotopy 

equivalence. 

THEOREM B. If, for all arrows Y--> Y '  in ~' ,  the induced map 

B (y, \ f)--> B (y \ f )  is a homotopy equivalence, then B f  : BCr --> B ~ '  has homotopy 

fiber B (~, \ f) .  

(ii) hocolims and their duals, holims, can be defined for functors into 

simplicial sets (5r rather than Top, and Bousfield-Kan ([1], XI, 9.2) prove: 

COFINALITY THEOREM. I f  f : c~ __> c~, is left cofinal, X : c~ _~ ~, X '  : cr ~ and 

X ' f  = X, then holimf : holim X'--> holim X is a homotopy-equivalence, if each 

X'(C'), C ' E  c~,, is fibrant. 

(iii) In the classical case, where G is a group or a group-like monoid, Milnor, 

[5], Stasheff, [10], May, [2] and many other authors prove the following, or 
variations of them: 

B(*, G, G)---~ B(*, G, *) = B G  is a quasi-fibration with fiber G, 

B ( Y ,  G, X)---> B(*, G, X) is a quasi-fibration with fiber Y, 

B(Y ,  G,X)---> B ( Y ,  G, *)is a quasi-fibration with fiber X. 

(iv) Let f : H - - *  G be a map of group-like topological monoids. Then 

Bf : BH--~ B G  is a quasi-fibration with fiber B(G,  H, *); see Stasheff [10], and 

May [2]. 

3. The generalization 

In [4], we will generalize the above theorems in 3 ways: 

(a) arbitrary bar-construction morphisms (f, a,/3) will be considered, 
(b) Top or ow will be replaced by more general categories with homotopy, 

(c) homotopy equivalences or quasi-fibrations will be replaced by more 

general families of morphisms. 

In this note, we deal only with (a), and generalize Quillen's approach to 

bar-constructions in Top. 
Recall that Quillen's proof of Theorem B, with a slight variation due to 

Thomason, [10], consists of 3 steps: 

(1) He defines a bisimplicial set S(f)**, with bisimplicial maps 
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h , x  7r " S( f )** ~ B , ( ~ ) ,  

rrv : S(f)**----> B ,(C~')• 

and a simplicial homotopy 

DS( f )**  

N,(C~) N.:r> N , ( + ' )  

(2) He proves that the geometric realization of Ir h is a homotopy equivalence. 

(3) He proves that the geometric realization of ~.v is a quasi-fibration with 

fiber B ( y  \ f ) .  

We now give a few more details and adapt Quillen's approach to bar- 

constructions. 

Let 

u E N q ( ~ ) ,  u = (A,,  ~ ~+ > A,--~- �9 �9 > A,+), 

v E N p O f ) ,  v (Bo b, b ' = , B t - ~  . . . .  , B p ) ,  

w :Bp'-->fAo. 

Then S ( f ) ~  = {(u, v, w)}, with obvious bisimplicial operators and projections 

rr h, rr". W e  wish to define a bisimplicial set T**--- T(f,  a, fl),• together with 

7rh : T**--> * •  cg, X ) ,  

~r ~ : T**--> B , ( Y ' ,  cr X')x,,  

and a simplicial homotopy 

D T ( f ,  a, ~)** 

B , ( Y , c ~ , X )  , B , ( Y ' , C ~ ' , X  ') 
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It seems natural to try to define T** by attaching coefficient spaces to each 

(u, v, w ) E  Sm(f).  Let (~,)~) be a point of such a coefficient space. In order to 

define rr h, rr ", we need mappings 

~ x @ X(A, , ) ,  

Since our data yield 

.~ ,-, x '  ~ X'(Bo),  ; ~, y E Y(Aq), ; ~ y ' E  Y'(Bp). 

v ' f f u  ) v'(,,,, ) 
Y ( A q )  ~ Y ' ( fAq )  > Y ' ( fAo)  ~ Y ' (Bp) ,  

we may take ] = y and the Y-component of our coefficient space to be Y(A q) .  

On the other hand, the only connection between x, x' given by our data is 

X ( A o )  

X ' (Bo)  x.~,) x'co) , X ' ( S . )  , X ' ( /Ao)  

Thus we take the X-component of our coefficient space to be the pullback of 

this diagram, denoted by X'(Bo)V X ( A o ) ,  and define 

Tpq(f,a,[3)= ]_I Y ( A q ) X ( X ' ( B o ) V X ( A o ) ) .  
(u,v,w) 

It is easy to define bisimplicial operators and projections ~.h, ~r ~, as required. 

Let 

j (u,  v, w): Y ( A q )  x (X'(Bo)  V X(Ao))--~ Tpq, 

j ( v ) "  r ' ( B q )  • X'(Bo)----> Bq (Y ' ,  c~,, X ' )  

be the canonical inclusions; let p = q = n, 

v ( i ) : B o  b, b ra,...I,,.w.b...b,, to. > . . .  ' , B, , fA,---~. .  . , f A ,  

and ~:X ' (Bo )VX(Ao) - - - -~X ' (Bo ) .  Then the simplicial homotopy is given by 

h, . j (u,  v, w)  = j ( v ( i ) ) .  [[3 x ~]. 

This takes care of the first step (1). 

Consider now r ~ and realize it geometrically in the p-direction; for fixed A0, 

the set of all ( v , w )  is the set of simplices of N,(CC'/fAo). Define 
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f(ao : c~'/fAo-'-> Top by f~Ao(B '-* fAo) = X ' (B )  V X(Ao). Then 

Tm = Bq(Cs Y • Bp(*, c~,/f - ,  f c ) )  

and 

RhTr h : Bq(qr Y • B(*, q?'/f - , f c ) ) - - >  Bq(~, Y • X).  

The category c~'/fA has the terminal object fA  

3.1, or [3], 7.5, 

1 

fA  and so, by [1], XII, 

B(*, ~ ' / fA ,  )~A ) = hocolim XA ~ XA (fA ' , fA  ) = X ( A  ) 

is a homotopy equivalence. Hence by the May-Tornehave theorem, 

Rcr h = R~R~rc h : RT**---~ B(~ ,  Y • X )  

is a homotopy equivalence. This is the second step (2). 

Consider now rrv and realize it geometrically in the q-direction; the category 

B \ f has objects of the form (A, x �9 B ~ fA) .  Define I7" : (B \ f)* ~ Top by 

(A, B x ~ FA)  ~ Y ( A ) ,  Xb : B \ f--~ Top sending (A, x) to the pullback of 

X ( A )  

X'(B')---> X'(B)--> X ' ( fA  ) 

This is defined only if we have B' ~ B. Thus, for any Bo---~ Bp and, so for 
any v ENp(~ ' ) ,  the space B(Bp\f ,Y'•  is defined; the function 
v ~B(Bp \f,  I 7 " •  is sufficient, it turns out (see appendix), to define 

B, (cg ' ,B (  \f, 17"• ~=)) and RVTr ~ is 

R ~r ~ : Bp(C~ ', B(_ \f, ~" • fi=))--~ Bp(C~ ', V' • X'). 

Applying the argument for the lemma, p. 90, [8], or [7], Theorem, or [3], 3.13 

and 3.14, we obtain: 

MAIN THEOREM. Let (f, a, fi ) : ( Y, c~, X)--> ( Y',  c~,, X'). Assume : 
(i) N,(C~), N,(Cr ') are good simplicial spaces. 

(ii) For all b : B'--> B, B(B \f,  ~" x -~b)---> Y ' ( B ) x  X ' (B ' )  has homotopy fiber 
17. 
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(iii) For all v :Bo-->B,---~...---~Bp, the squares below induce homotopy 

equivalences on the homotopy fibers: 

BG,. , I f ,  IP x X',~,.~) <-- B (B,. I f ,  "17 x ..~,,)--> B(B,, I f ,  I 7 x .k'a,,,,) 

Y'(B,, ,) x X'(B,,) <--- Y'(Bp) x X'(Bo)--> Y'(Bp) x X' (B,)  

Then B(f,  a, fi) also has homotopy .fiber F: 

It is not difficult to see that (iii) can be simplified to: 

(iii)' For all b : B'--* B, the squares below induce homotopy equivalences on the 

homotopy .fibers : 

u(~/L f" x X ' , ) , -  B(,, I f ,  f'x2~)--->B(,,,\f, '2 x X',) 

4, ,1, J, 

Y'(B) x X ' (B )  <-- Y ' (B)  x X'tB')--> Y'(B')  x X ' (B ' )  

Furthermore, the left square is easily seen to be a pullback; however, 

pullbacks do not necessarily preserve homotopy fibers. Nevertheless, altering 

the last part of the proof slightly, using theorem 0.2 of [12] instead of [7], one 

obtains the following variant of the main theorem: 

THEOREM. Let ([, a, fi) : (Y, % X)--~ (Y ' ,  ~' ,  X').  Assume:  

(i) N , ( ~ ) ,  N , ( ~ ' )  are good simplicial spaces. 

(ii) For all b : B'--~ B, B(B \/ ,  ~" • )~b)---~ Y'(B) • X' (B ' )  is a fibration with 

.fiber F. 
(iii) For all b : B'---~ B, the square below induces weak homotopy equivalences 

on the fibers : 

u(,, \ f, f." • 2 ~ ) ~  B( ; . \ f ,  ? • ~,) 
J, $ 

Y'(B) x X'(B ' ) - - .  Y'(B') x X' (B ' )  

Then B(f,  a, fl) is a quasi-fibration with fiber F, up to homotopy equivalence. 

These theorems include as special cases slight variations of all the theorems of 

w 

REMARK. If G is a group and X a left G-space, then Morava, [6], defines a 
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category [X/G], whose objects are x • X, and morphisms from x to x' are 

g E G such that gx = x'. Then N,[X/G] ~ B,(*, G,X). He gives credit to G. 

Segal for this construction. 

This suggests that one might attempt to define a (topological) category 

[Y, ~, X] such that N,[  Y, cr X] ~ B ,( Y, ~, X) and study B([, a, [3) by applying 

Quillen's Theorem B (generalized to topological categories) to 

[Y, q~,X]---~ [Y', (r X']. This yields a complicated homotopy fiber which can, 

however, be unraveled to obtain another proof of the main theorem. 

This approach will be used in [4] to yield the generalization of the Main 

Theorem described at the beginning of this section. 

Appendix 

Analyzing the definition of bar constructions, one sees that they can be 

defined with very general types of data. All one needs are "coefficient spaces" 

Z(v) defined for every v ~ V, (~). together with enough structure to define the 

simplicial operators. In our case, if v is 

Bo bl b > B,-->" " �9 " >B~ 

define 

z(v) = B(~. \ f ,  ? x 2o). 

It suffices to construct Z(u )---9 Z(dov), Z(v)---~ Z(d.v), since the other operators 

are obvious. Now 

Z(d,,v) = BG. \ f ,  ~/x X,~,~), Z (d .v )  = Bo.._, \f, Y x R,~.o); 

Z(v)---~ Z(d,,v) is induced by the natural transformation .~o ~ -k'~,~ given by b,. 

and Z ( v ) ~ Z ( d , v ) i s  induced by the functor B. \ f~B~ \ f  defined by b,. 
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